Fix: Remove AIAgents-Support.md from .gitignore and update with current file structure

This commit is contained in:
2025-09-30 16:31:44 -03:00
parent 459e46e2b0
commit 1abe4c9f09
2 changed files with 390 additions and 1 deletions

2
.gitignore vendored
View File

@@ -164,4 +164,4 @@ kubeconfig
.playwright-mcp/ .playwright-mcp/
# AI Agent Support # AI Agent Support
AIAgents-Support.md # AIAgents-Support.md - Keep this file in version control

389
AIAgents-Support.md Normal file
View File

@@ -0,0 +1,389 @@
# AI Agents Support - OpenShift Resource Governance Tool
## 📋 Project Status Overview
**Current State**: ✅ **PRODUCTION READY** - Application is fully functional and cluster-agnostic
**Last Updated**: 2025-09-30
**Current Version**: 1.0.0
**Deployment Status**:
- ✅ OCP 4.18: Working
- ✅ OCP 4.19: Working
## 🎯 Project Description
**OpenShift Resource Governance Tool** is a comprehensive web application that analyzes Kubernetes/OpenShift cluster resource usage, validates resource requests and limits against Red Hat best practices, and provides historical analysis using Prometheus metrics.
### Core Features
- **Resource Analysis**: Real-time analysis of CPU/memory requests and limits
- **Smart Problem Detection**: Identifies workloads without requests/limits and provides detailed analysis
- **Modal-based Analysis**: Professional interface with detailed pod and container analysis
- **Historical Analysis**: Workload-based historical resource usage (1d, 7d, 30d)
- **VPA Integration**: Vertical Pod Autoscaler recommendations (planned)
- **Export Reports**: Generate reports in XLS, CSV, PDF formats
- **Cluster Agnostic**: Works on any OpenShift cluster without configuration
## 🏗️ Architecture
### Backend (FastAPI)
- **Main App**: `app/main.py` - FastAPI application with lifespan management
- **API Routes**: `app/api/routes.py` - REST endpoints for cluster data
- **Core Services**:
- `app/core/kubernetes_client.py` - K8s/OpenShift API client
- `app/core/prometheus_client.py` - Prometheus metrics client
- `app/services/validation_service.py` - Resource validation rules
- `app/services/historical_analysis.py` - Historical data analysis
- `app/services/report_service.py` - Report generation
- **Models**: `app/models/resource_models.py` - Pydantic data models
### Frontend (HTML/CSS/JavaScript)
- **Static Files**: `app/static/index.html` - Single-page application
- **Features**:
- Pragmatic dashboard with single view
- Modal-based detailed analysis for namespace problems
- Problem Summary table showing namespace issues
- Real-time cluster data display
- Professional interface without browser alerts
- Responsive design with Bootstrap
### Infrastructure
- **Container**: Docker with Python 3.11
- **Deployment**: Kubernetes/OpenShift with rolling updates
- **Monitoring**: Prometheus integration for metrics
- **Security**: RBAC with cluster-monitoring-view permissions
## 🚀 Current Deployment Status
### Working Clusters
1. **OCP 4.18**: `resource-governance.apps.shrocp4upi418ovn.lab.upshift.rdu2.redhat.com`
2. **OCP 4.19**: `resource-governance-route-resource-governance.apps.shrocp4upi419ovn.lab.upshift.rdu2.redhat.com`
### Deployment Process
```bash
# Quick deploy (recommended)
./scripts/deploy-complete.sh
# Manual deploy
./scripts/build-and-push.sh
oc apply -f k8s/
```
## ✅ Completed Features
### 1. Core Application
- [x] FastAPI backend with async support
- [x] Kubernetes/OpenShift API integration
- [x] Prometheus metrics collection
- [x] Resource validation with Red Hat best practices
- [x] Real-time cluster status dashboard
### 2. Smart Resource Analysis
- [x] Problem identification for namespaces with resource issues
- [x] Detailed pod and container analysis
- [x] Modal-based detailed view with recommendations
- [x] Issue categorization (missing requests, missing limits, wrong ratios)
- [x] Clear recommendations for each problem
### 3. UI/UX
- [x] Pragmatic dashboard with single view
- [x] Modal-based detailed analysis
- [x] Problem Summary table showing namespace issues
- [x] Professional interface without browser alerts
- [x] Responsive design with Bootstrap
- [x] Real-time data updates
### 4. Deployment & Infrastructure
- [x] Cluster-agnostic deployment
- [x] SSL/TLS support with fallback
- [x] RBAC configuration
- [x] Rolling update strategy
- [x] Route exposure for internet access
- [x] Docker Hub image publishing
### 5. Documentation & Localization
- [x] Complete translation from Portuguese to English
- [x] All comments, docstrings, and strings translated
- [x] README.md, DOCUMENTATION.md, AIAgents-Support.md in English
- [x] Clean documentation structure with only current files
## 🔧 Technical Implementation Details
### Key Files Modified
- `app/core/kubernetes_client.py` - SSL fallback for cluster compatibility
- `app/core/prometheus_client.py` - ServiceAccount token authentication
- `app/services/validation_service.py` - Enhanced resource validation engine
- `app/static/index.html` - Pragmatic dashboard with modal-based analysis
- `app/models/resource_models.py` - Updated models for container data structure
- `k8s/deployment.yaml` - Cluster-agnostic security context
- `k8s/route.yaml` - Dynamic hostname generation
### Critical Fixes Applied
1. **SSL Connection**: Fallback to disable SSL verification when CA cert is empty
2. **SCC Compatibility**: Removed hardcoded UIDs, let OpenShift assign them
3. **Route Agnostic**: Removed hardcoded hostname, let OpenShift generate it
4. **Image Pull**: Docker Hub secret configuration
5. **Prometheus Integration**: ServiceAccount token authentication
6. **Data Structure Fix**: Updated PodResource model to handle container dictionaries
7. **Validation Engine**: Fixed container resource access in validation_service.py
8. **UI/UX**: Replaced browser alerts with professional modals
## 🐛 Known Issues
### 1. Historical Analysis Data
**Status**: ⚠️ **SHOWING ZEROS**
**Issue**: Prometheus queries return zero values for CPU/memory usage
**Location**: `app/services/historical_analysis.py`
**Impact**: Historical analysis appears empty
**Next Steps**: Debug PromQL queries and metric availability
### 2. Export Functionality
**Status**: ⚠️ **NEEDS TESTING**
**Issue**: Export functionality needs validation with current implementation
**Location**: `app/services/report_service.py`
**Impact**: Users may not get proper export files
**Next Steps**: Test and fix file download mechanism
## 📋 Roadmap & Next Steps
### 🎯 **PRAGMATIC ROADMAP - Resource Governance Focus**
**Core Mission**: List projects without requests/limits + provide smart recommendations based on historical analysis + VPA integration
---
### **Phase 1: Enhanced Validation & Categorization (IN PROGRESS 🔄)**
#### 1.1 Smart Resource Detection
- [x] **Enhanced Validation Engine**
- Better categorization of resource issues (missing requests, missing limits, wrong ratios)
- Severity scoring based on impact and risk
- Detailed analysis of pod and container resource configurations
- [x] **Workload Analysis System**
- **Problem Identification**: Namespaces with resource configuration issues
- **Detailed Analysis**: Pod-by-pod breakdown with container details
- **Issue Categorization**: Missing requests, missing limits, wrong ratios
- **Recommendations**: Clear guidance on how to fix each issue
#### 1.2 Historical Analysis Integration
- [ ] **Smart Historical Analysis**
- Use historical data to suggest realistic requests/limits
- Calculate P95/P99 percentiles for recommendations
- Identify seasonal patterns and trends
- Flag workloads with insufficient historical data
---
### **Phase 2: Smart Recommendations Engine (SHORT TERM - 2-3 weeks)**
#### 2.1 Recommendation Dashboard
- [ ] **Dedicated Recommendations Section**
- Replace generic "VPA Recommendations" with "Smart Recommendations"
- Show actionable insights with priority levels
- Display estimated impact of changes
- Group by namespace and severity
#### 2.2 Recommendation Types
- [ ] **Resource Configuration Recommendations**
- "Add CPU requests: 200m (based on 7-day P95 usage)"
- "Increase memory limits: 512Mi (current usage peaks at 400Mi)"
- "Fix CPU ratio: 3:1 instead of 5:1 (current: 500m limit, 100m request)"
- [ ] **VPA Activation Recommendations**
- "Activate VPA for new workload 'example' (insufficient historical data)"
- "Enable VPA for outlier workload 'high-cpu-app' (unpredictable usage patterns)"
#### 2.3 Priority Scoring System
- [ ] **Impact-Based Prioritization**
- **Critical**: Missing limits on high-resource workloads
- **High**: Missing requests on production workloads
- **Medium**: Suboptimal ratios on established workloads
- **Low**: New workloads needing VPA activation
---
### **Phase 3: VPA Integration & Automation (MEDIUM TERM - 3-4 weeks)**
#### 3.1 VPA Detection & Management
- [ ] **VPA Status Detection**
- Detect existing VPAs in cluster
- Show VPA health and status
- Display current VPA recommendations
- Compare VPA suggestions with current settings
#### 3.2 Smart VPA Activation
- [ ] **Automatic VPA Suggestions**
- Suggest VPA activation for new workloads (< 7 days)
- Recommend VPA for outlier workloads
- Provide VPA YAML configurations
- Show estimated benefits of VPA activation
#### 3.3 VPA Recommendation Integration
- [ ] **VPA Data Integration**
- Fetch VPA recommendations from cluster
- Compare VPA suggestions with historical analysis
- Show confidence levels for recommendations
- Display VPA update modes and policies
---
### **Phase 4: Action Planning & Implementation (LONG TERM - 4-6 weeks)**
#### 4.1 Action Plan Generation
- [ ] **Step-by-Step Action Plans**
- Generate specific kubectl/oc commands
- Show before/after resource configurations
- Estimate implementation time and effort
- Provide rollback procedures
#### 4.2 Implementation Tracking
- [ ] **Progress Monitoring**
- Track which recommendations have been implemented
- Show improvement metrics after changes
- Alert on new issues or regressions
- Generate implementation reports
#### 4.3 Advanced Analytics
- [ ] **Cost Optimization Insights**
- Show potential cost savings from recommendations
- Identify over-provisioned resources
- Suggest right-sizing opportunities
- Display resource utilization trends
---
### **Phase 5: Enterprise Features (FUTURE - 6+ weeks)**
#### 5.1 Advanced Governance
- [ ] **Policy Enforcement**
- Custom resource policies per namespace
- Automated compliance checking
- Policy violation alerts
- Governance reporting
#### 5.2 Multi-Cluster Support
- [ ] **Cross-Cluster Analysis**
- Compare resource usage across clusters
- Centralized recommendation management
- Cross-cluster best practices
- Unified reporting
---
## 🎯 **IMMEDIATE NEXT STEPS (This Week)**
### Priority 1: Enhanced Validation Engine
1. **Improve Resource Detection**
- Better categorization of missing requests/limits
- Add workload age detection
- Implement severity scoring
2. **Smart Categorization**
- New workloads (< 7 days) → VPA candidates
- Established workloads (> 7 days) → Historical analysis
- Outlier workloads → Special attention needed
### Priority 2: Recommendation Dashboard
1. **Create Recommendations Section**
- Replace generic VPA section
- Show actionable insights
- Display priority levels
2. **Historical Analysis Integration**
- Use Prometheus data for recommendations
- Calculate realistic resource suggestions
- Show confidence levels
### Priority 3: VPA Integration
1. **VPA Detection**
- Find existing VPAs in cluster
- Show VPA status and health
- Display current recommendations
2. **Smart VPA Suggestions**
- Identify VPA candidates
- Generate VPA configurations
- Show estimated benefits
## 🔍 Development Guidelines
### Code Standards
- **Language**: English only (no Portuguese)
- **Comments**: Comprehensive docstrings
- **Error Handling**: Proper exception handling with logging
- **Testing**: Use Playwright for UI testing
### Git Workflow
- **Commits**: Descriptive messages without emojis
- **Branches**: Feature branches for major changes
- **Releases**: Tag stable versions
### Deployment Checklist
1. Test in development environment
2. Build and push Docker image
3. Deploy to test cluster
4. Verify all functionality
5. Deploy to production
6. Update documentation
## 🛠️ Troubleshooting Guide
### Common Issues
1. **SSL Certificate Errors**: Check `kubernetes_client.py` fallback logic
2. **SCC Permission Denied**: Verify `deployment.yaml` security context
3. **Image Pull Errors**: Check Docker Hub secret configuration
4. **Route Not Accessible**: Verify route hostname generation
5. **Prometheus Connection**: Check ServiceAccount token and RBAC
### Debug Commands
```bash
# Check pod logs
oc logs -f deployment/resource-governance -n resource-governance
# Check service status
oc get svc -n resource-governance
# Check route
oc get route -n resource-governance
# Test API
curl -k https://<route-url>/api/v1/health
# Test cluster status
curl -k https://<route-url>/api/v1/cluster/status
# Check deployment status
oc rollout status deployment/resource-governance -n resource-governance
```
## 📞 Support Information
### Key Contacts
- **Developer**: Anderson Nobre
- **Repository**: https://github.com/andersonid/openshift-resource-governance
- **Docker Hub**: andersonid/resource-governance:latest
### Resources
- **Main Documentation**: README.md
- **Documentation Index**: DOCUMENTATION.md
- **AI Agents Support**: AIAgents-Support.md (this file)
- **Deployment Scripts**: scripts/ directory
- **Kubernetes Manifests**: k8s/ directory
---
## 🎯 Current Session Context
**Last Action**: Implemented modal-based detailed analysis and professional interface
**Current Focus**: Enhanced validation engine with detailed pod/container analysis
**Next Priority**: Implement smart recommendations dashboard and VPA integration
**Status**: Phase 1 in progress - Enhanced Validation & Categorization partially completed
**Recent Achievements**:
- ✅ Modal-based detailed analysis for namespace problems
- ✅ Professional interface without browser alerts
- ✅ Problem Summary table with namespace issues
- ✅ Detailed pod and container analysis with recommendations
- ✅ Clear issue categorization and recommendations
**Note**: This file should be updated after each significant change to maintain project context for AI agents.