Implement OpenShift Console exact queries for CPU and Memory Usage

- Add get_workload_cpu_summary() and get_workload_memory_summary() methods
- Use exact OpenShift Console PromQL queries for data consistency
- Update historical analysis API endpoints to include real CPU/Memory data
- Document all OpenShift Console queries in AIAgents-Support.md
- Fix CPU Usage and Memory Usage columns showing N/A in Historical Analysis
This commit is contained in:
2025-10-03 20:19:42 -03:00
parent 692d647abd
commit a4cf3d65bc
2 changed files with 115 additions and 7 deletions

View File

@@ -1419,15 +1419,33 @@ async def get_historical_analysis(
}
workloads[workload_name]['pods'].append(pod)
# Convert to list and add basic info
# Convert to list and add basic info with real CPU/Memory data
workload_list = []
historical_service = HistoricalAnalysisService()
for workload_name, workload_data in workloads.items():
# Get current CPU and Memory usage using OpenShift Console queries
try:
cpu_usage = await historical_service.get_workload_cpu_summary(workload_data['namespace'], workload_name)
memory_usage = await historical_service.get_workload_memory_summary(workload_data['namespace'], workload_name)
# Format CPU usage (cores)
cpu_display = f"{cpu_usage:.3f} cores" if cpu_usage > 0 else "N/A"
# Format memory usage (MB)
memory_display = f"{memory_usage / (1024 * 1024):.1f} MB" if memory_usage > 0 else "N/A"
except Exception as e:
logger.warning(f"Error getting summary for {workload_name}: {e}")
cpu_display = "N/A"
memory_display = "N/A"
workload_list.append({
'name': workload_name,
'namespace': workload_data['namespace'],
'pod_count': len(workload_data['pods']),
'cpu_usage': 'N/A', # Will be populated by Prometheus queries
'memory_usage': 'N/A', # Will be populated by Prometheus queries
'cpu_usage': cpu_display,
'memory_usage': memory_display,
'last_updated': datetime.now().isoformat()
})
@@ -1468,8 +1486,8 @@ async def get_workload_historical_details(
cpu_data = await historical_service.get_cpu_usage_history(namespace, workload, time_range)
memory_data = await historical_service.get_memory_usage_history(namespace, workload, time_range)
# Generate recommendations
recommendations = await historical_service.generate_recommendations(namespace, workload, time_range)
# Generate recommendations and get workload summary
recommendations, workload_summary = await historical_service.generate_recommendations(namespace, workload, time_range)
return {
"workload": workload,
@@ -1477,6 +1495,7 @@ async def get_workload_historical_details(
"cpu_data": cpu_data,
"memory_data": memory_data,
"recommendations": recommendations,
"workload_summary": workload_summary,
"timestamp": datetime.now().isoformat()
}